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New Technique to Measure Transmission Line Attenuation

J. Carroll, M. Li, and K. Chang

Abstract—A new technique using a quarter-wave open stub resonator
was developed to measure a transmission line’s attenuation coefficient,
Transmission line attenuation was extracted from the Q}-factor measure-
ment of the open stub resonator. Equations were derived that relate
the stub’s two port S-parameters to transmission line attenuation. The
new method’s benefits include higher accuracy over other methods of
attenuation measurement, less area required for the test structure, and
easier test structure design. Applications include simple and accurate
determination of the transmission line’s loss characteristics and effective
dielectric constant at very high frequencies.

I. INTRODUCTION

High frequency designers need accurate characterization of circuit
components in order to meet circuit specifications in as few design
iterations as possible. One of the most difficult characteristics to
theoretically determine is transmission line attenuation. However,
it can be easily measured. A common method is to find the Q-
factor of half-wave transmission line resonators [1]. Typically, the
521 measurement of a half wave resonator around resonance, shown
in Fig. 1(a) for microstrip, is used to determine the transmission
line’s attenuation. This paper describes a new test structure using a
quarter-wave open stub resonator, shown in Fig. 1(b) for microstrip,
that is a more accurate and useful topology for characterizing planar
transmission lines.

The Half Wave Line Resonator Method (HWLRM) has many
inherent problems. First, the size of the resonator and required feed
lines take up a large amount of substrate area. For example, GaAs
“real-estate” is expensive and may prohibit the use of HWLRM to
monitor transmission line attenuation on production wafers. Likewise,
the long length of the structure can cause measurement problems with
wafer probe stations. Secondly, the HWLRM coupling gaps shown
in Fig. 1(a) cause measurement inaccuracies at high frequencies due
to radiation losses. The two gaps are actually four open radiating
microstrip ends, whose large radiation losses at high frequencies are
undesirably included in the measured transmission line attenuation
coefficient. Therefore, a new test structure was developed in order to
save space, reduce radiation, and improve transmission line charac-
terization. This paper describes the derivation of the new method’s
extraction of attenuation and effective dielectric constant. Both test
structures shown in Fig. 1 were constructed with microstrip to verify
the new technique and determine any measurement differences.

Il. DERIVATION OF OPEN STUB ()-FACTOR

The new test structure involves the use of a quarter-wave stub
resonator shown in Fig. 1(b). The new topology reduces the amount
of space needed for the test structure by at least 50% over the
HWLRM. The quarter-wave resonator can be realized through the use
of an open circuited quarter-wave transmission line stub. The new test
structure is directly coupled to the measurement system which avoids
the inaccuracies caused by the HWLRM’s coupling gaps. There is
only one open end in the new structure, which eliminates most of
the radiation and discontinuity losses found in the HWLRM. The
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quarter-wave stub resonator method does introduce a tee-junction
discontinuity which adds a small amount of capacitance to the stub
[2] thereby lowering the stub’s resonant frequency. Simulations have
shown that this frequency shifting is less than 1% for 50-Ohm stubs
at 3 GHz on a substrate dielectric constant of 2.3. This is much less
than the 5% frequency shift predicted on the same substrate by the
HWLRM’s inherent lengthening due to the straight resonator’s open
ends [3].

The open circuit transmission line stub creates an S21 band-
stop response. This can be modeled by replacing the stub with the
Iumped element resonator circuit as shown in Fig. 2 at or near the
stub’s resonance. The following equation gives the 521 of the 2 port
network in Fig. 2 at or near resonance [4]:

_ 2Zn

o 2Zm + ZO
where Zj is the characteristic impedance of the measurement system
and Z,, is the equivalent input impedance of the lumped element
resonator shown in Fig. 2. It would be convenient to measure
some 521 points off resonance (521res) which correspond to the
“twice power” points. The “twice power” points are those when the
magnitude of S21 is equal to the S21rps times square root of 2

|521Lw1ce—power| = \/§|521RES| (2)
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Equation (2) can be written using 521 from (1) and an insertion
loss measurement at resonance (S21rgs). S21res is entirely real
because resonance is defined as when the imaginary components of
the resonator cancel and the imaginary part of 521 is equal to zero.
Substituting (1) into (2) gives

2Zm

m = ﬁSQIRES- (3)

The input impedance Zi, given by Ro(1 + j2QoAw/we) for a
series lumped circuit [5] can be substituted into (3) . This leads to

‘230 [1 +j(?§0£Aw)] +Z0‘ Y )
‘Ro [1+j(%Aw)”  S21mes @

where () is the unload (-factor of the resonator, wo is the resonant
frequency, 2 Aw is the “twice power” bandwidth. R, in (4) can be
found at resonance by a magnitude measurement of S21rgs similar
to the DeLoach measurements for equivalent parameters of diodes
[6]. The loaded Q(Q1) is defined as the resonant frequency divided
by the resonator’s 3 dB bandwidth and is given below

_ Yo
@r= 28w’

Using (5), taking the magnitudes of the numerator and denominator
of the left hand side of the simplified (4). and with substitution of
(1) will yield:

&)

QL
= 6a)
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Another form of the equation can be expressed as
Qo = Qr (6b)

V1 —2.10-(La/10)

where L4 is the insertion loss in dB at the resonance. Equation (6a)
or (6b) can be used to extract the unloaded ¢ of a quarter-wave stub
resonator with a simple magnitude measurement of insertion loss at
the resonant frequency and its “3 dB up” bandwidth. Equation (6)
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Quarter-Wave Stub Resonator structure.
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Fig. 2. Quarter-wave stub equivalent circuit.

shows that the unloaded ) for a normal transmission line quarter-
wave stub is nearly equal to the loaded (). For example, if the
magnitude of S21rgs is 0.3 (—30 db), the square root term in (6)
equals to 0.9991. Little error occurs by using one for the square
root term. The error in this approximation becomes even less for
low transmission line losses. This characteristic of the quarter-wave
method of determining () occurs because the measurement system
has little effect on the ¢ of the open stub. This is not the case for
the HWLRM whose unloaded )-factor is given by [7]

QL

T 1 10-@a/20) %

o
where L, is the insertion loss of the half-wave resonator in dB
at resonance. This equation was derived for lightly-coupled parallel
resonator structures which models the bandpass nature inherent in
the HWLRM.

The transmission line’s effective dielectric constant can then be
determined through the resonant frequency and the known length
of the quarter-wave stub. The effective dielectric constant at the
frequency of each of the stub’s quarter-wave resonances is given
below, similar to the HWLRM structure’s expression [8].

nc

2
4fres(l + 1) )

where c is the free space speed of light. This equation takes into effect
the fringing at the end which effectively lengthens the physical length
of the resonator (/) by an extra length (I.) which can be determined
by well known empirical equations [3]. Finally, the measured (J-
factor is used in the following equation along with the effective
dielectric constant to calculate the transmission line attenuation as
in the HWLRM [1]

5meas,eﬁ' = ( = ].7 3, 5, e (8)
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The units for o are in dB/length. The calculation for the error

bounds on both the quarter-wave Q-factors and attenuation coeffi-
cients are the same as derived by Goldfarb and Platzker [1].

®

III. SIMULATION AND MEASUREMENT OF RESONATOR STRUCTURES

The derived equations were tested by Touchstone CAD simulation
of both the HWLRM and our method. The structures shown in
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Top View of the Microstrip Test Structures used for Attenuation Measurement. (a) Half-Wave Line Resonator Method (HWLRM) structure. (b)
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Fig. 1 were simulated on Duriod substrate (£, = 2.3, height = 62
mil, normalized bulk resistivity RHO = 6). The simulations of the
microstrip included only the microstrip conduction losses and did
not include discontinuity or radiation losses caused by the resonator
structures themselves, The loaded and unloaded ¢ determined for
the quarter-wave open stub are both 292. With the same microstrip
parameters, the HWLRM gave a loaded () of 291.5 and an unloaded
@ of 292.7. These simulated measurements were close enough to be
considered equal considering numerical and interpolation accuracy.
The simulated measurement demonstrated that the quarter-wave stub
technique can successfully determine the same unloaded @ of a
microstrip transmission line as does the HWLRM.

The simulated structures were constructed on the Duriod substrate
to compare the measured (J-factors and attenuation coefficients.
The measured values will differ from the simulated data in that
radiation and discontinuity losses are undesirably included in the
unloaded @ factors. This inclusion reduces the measured (J-factor
and increases the measured attenuation from the true transmission
line characteristics. A broad sweep over frequency on the structures
shown in Fig. 1 was used to find their resonance. A very narrow
sweep was then used to ensure low measurement error. All -
factors were measured at no more than 0.5 MHz steps to Kkeep
the measurement error less than +3% for the Q-factors lower than
100, and less than +£6% for the other higher (Q-factors [1]. The
measured results are listed in Table I and show that the unloaded
@-factor in the HWLRM is not repeatable for different size gaps.
This led to the microstrip with 100-mil gaps to have a 13% different
unloaded @-factor than the tighter coupled 50-mil gap resonator.
The difference is greater than the +3% error bounds on both of the
measurements. The sensitivity of the HWLRM structures to errors
in measurement causes this measurement inaccuracy. The quarter-
wave stub resonator method does not exhibit this measurement error
because it has no coupling gaps and less radiation loss. Table I also
shows the 50-mil gap HWLRM had 49% less (J-factor than the open
stub resonator. The HWLRM measurement must include more losses
than the quarter-wave stub resonator measurement because the CAD
simulations did not predict this large difference between these two
@ factor measurement techniques. Table I shows that the lower @
of the HWLRM causes the extracted attenuation measurement to be
higher than the quarter-wave stub resonator measurement although
the effective dielectric constants are nearly the same. Therefore, it
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TABLE 1
MEASURED RESONATOR RESULTS USING Low DIELECTRIC CONSTANT SUBSTRATE (&, = 2.3)
Resonator/Structure Type | Resonant S21 | Loaded | Unloaded | Attenuation | Effective
Frequency | (dB) Q Q dB/m Dielectric
(GHz) Constant
HWLRM 50 mil gap 3486 -1231 754 99.5 3791 1473
HWLRM 100 mi} gap 3 506 =25 02 819 868 4299 1465
Quarter-Wave Stub 3390 4484 | 1967 196 7 1881 144
TABLE 11
MEASURED RESONATOR REsuLTS USING HIGH DIELECTRIC CONSTANT SUBSTRATE (£, = 10.5)
Resonator/Structure Type| Resonant S21 | Loaded | Unloaded | Attenuation | Effective
Frequency | (dB) Q Q dB/m Dielectric
(GHz) Constant
HWLRM 2878 -12 81 145 4 188 5 2 486 2.768
Quarter-Wave Stub 3097 -40 88 1842 1842 2493 2 657

was thought that the differences were caused by larger discontinuity
and radiation losses inherent in the HWLRM structure.

Two experiments were run to verify if radiation was the cause of
the @-factor differences. The first experiment was to build the test
structures on a Duriod substrate with a dielectric constant of 10.5 in
order to suppress the radiation of the gaps. The resonator structure’s
dimensions were redesigned so that the resonances stayed at about
3.5 GHz. The test results in Table II show a much closer agreement
between the HWLRM and quarter-wave stub resonator methods. The
difference between them is within the measurement uncertainty.

The resonator structures were then tested in an anechoic chamber to
determine how much power they radiated by measuring their directive
gain. Both types of resonators were terminated at one port with 50
) and each of the radiation patterns was taken from the other port
at the resonant frequencies listed on Table 1. The E-Plane patterns in
Fig. 3 for the low dielectric constant of 2.3 show that the open stub
resonator structure radiates 11.2 dB less power at its first resonance
than the half wave line resonator does with the 50-mil gap. The 100-
mil gap half wave line resonator exhibited an even larger amount of
radiation. The radiation differences show that the HWLRM resonant
structure radiates much more total power than the quarter-wave stub
structure for low dielectric constants which caused the difference in
the two method’s QQ-factors. The HWLRM structure actually exhibits
a small amount of directive gain (0.12 dB), which shows it radiates
too much for accurate transmission line attenuation measurement.
The radiation patterns for the higher dielectric constant of 10.5 were
also measured and exhibited a reduction in radiation by both test
structures. The quarter-wave stub structure showed a 3-dB decrease
in radiation to —18.4 dB at boresight. The HWLRM structure showed
a substantial radiation decrease to — 14 dB. However, there was still a
4.4 dB higher radiation for the half-wave resonator than the quarter-
wave stub. This led to the much closer measured (J-factors exhibited
in Table II. The quarter-wave stub resonator still radiated less, but
the power levels were so low that the difference was not seen in the
()-factor measurement.

IV. MEASUREMENT TECHNIQUE DIFFERENCES

In Section IIl, it was shown that the HWLRM was very sensitive
to the measurement system and coupling gaps. Table I shows that the
HWLRM’s measurement sensitivity causes the unloaded (Q-factor to
be inaccurate for different gap sizes. Also, only empirical equations
and rules of thumb are available to determine which gaps cause
too much or too little coupling to prevent measurement system's
influence in the (-factor measurement [8]. This uncertainty causes
the designing of the half wave resonators to be done with a best
guess. Designing the quarter-wave structure 18 easier due to its direct
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Fig. 3. E-plane radiation patterns from both resonators (HWLRM structure

and quarter-wave stub resonator structure).

coupling to the measurement system. The gaps in the HWLRM
method were also shown to radiate much more than the quarter-wave
resonator, which resulted in different measured (Q-values. When this
HWLRM radiation was suppressed with a high dielectric constant
substrate, the two method’s (2-values converged. The radiation causes
the HWLRM to be less accurate than the open stub method especially
for low dielectric constant substrates and low loss transmission lines.
Finally, the quarter-wave stub resonator structure takes up at least
50% less area than the HWLRM and therefore is easier to measure
and less costly to produce on expensive substrates such as GaAs.

V. CONCLUSION

A new test structure using a quarter-wave open stub resonator
for attenuation measurement of transmission lines was developed.
The equations describing the extraction of the unloaded Q-factor,
auenuation, and effective diclectric constant were derived for the
quarter-wave open stub resonator measurement method. Theoretical
verification was done in comparison with the common half-wave
measurement on microwave circuit simulation software. Microstrip
examples of both structures were built on low and high dielectric con-
stant substrates to demonstrate that the quarter-wave measurement is
more accurate. Other advantages of using the quarter-wave resonator
method are that it is easier to design and takes up less space than the
half wave resonator method. This new structure demonstrated in this
paper will allow the measurements of the (J-factor, attenuation, and
etfective dielectnic constant of any type of transmission line, such as
microstrip, coplanar waveguide or stripline.
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Waveguide and Resonator Perturbation
Techniques Measuring Chirality and
Nonreciprocity Parameters Biisotropic Materials

Sergei A. Tretyakov and Ari J. Viitanen

Abstract—Waveguide and resonator perturbation techniques are con-
sidered for determining electromagnetic parameters of general
biisotropic, or nonreciprocal chiral, materials. The biisotropic materials
are the most general linear isotropic media, whose constitutive relations
are governed by four complex material parameters. The material
parameters of biisotropic media can be obtained through measuring the
change in the propagation constant of waveguide modes or measuring
the shift in the resonant frequency for resonators with perturbation
techniques. To measure these parameters a method utilizing waveguides
or cavity resonators with two degenerate modes is proposed.

I. INTRODUCTION

Interest in biisotropic materials has been recently widely increasing
since they offer some novel promising applications in microwave
technology and radio engineering, like low-reflection coatings [1],
elimination of crosspolarization in microwave lens antennas [2] and
construction of a twist polarizer [3]. The most general isotropic
materials are characterized by four material parameters, dielectric
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permittivity, magnetic permeability, chirality parameter and non-
reciprocity parameter. The biisotropic media are, in general, non-
reciprocal, and the reciprocal special case is usually called chiral
media. In electromagnetics terms, biisotropic materials were formal-
ized for the first time in 1948, when Tellegen invented gyrator, a
nonreciprocal circuit element, and considered what kind of material
is needed to manufacture it [4]. It has been known that the material
parameters of a biisotropic medium are associated with a model of
the medium possessing both electric and magnetic dipole moments,
parallel or antiparallel to each other [5].

To be able to determine the medium parameters of the biisotropic
material is of great importance for practical applications. This work
applies to chiral media in practice and gives a method to determine
the material parameters for the general, theoretically interesting
biisotropic media. In this paper we use the perturbation theory for
general waveguides and resonators with small biisotropic inclusions
and propose possible cavity resonator measurement techniques and
waveguide perturbation techniques for measuring both the chirality
parameter and the nonreciprocity parameter simultaneously. Free-
space techniques are used to measure the chirality parameter in chiral
composites [6]-[8], and the theoretical basis for the retrieval of the
material parameters is the theory of reflection and transmission in
chiral slabs. An alternative measurement technique for nonreciprocity
parameter measurements is given in [9]. An approach to determina-
tion of the chirality parameter by using corrugated waveguides with
chiral inclusions is discussed in [10]. A cavity resonator method for
measuring the nonreciprocity parameter has been suggested in [11].

II. PERTURBATION THEORY

The biisotropic medium is characterized by linear and isotropic
constitutive relations with four scalar parameters. These relations can
be written (assuming the e/“* time dependence), in the form

D=¢E+¢H. B=uH+(E, (1)

where € and p are dielectric permittivity and magnetic permeability
of the medium, respectively. and the parameters ¢ and ¢ characterize
coupling between the electric and magnetic fields. It is convenient to
write the coupling parameters £ and ¢ in the form [12]:

E= (Y= e€o, (= (X +jK)yIoCo, 2)

where €, and p, are the free-space permittivity and permeability,
respectively, and the parameter x describes the magnitude of chirality
and x the nonreciprocity of the medium.

A. Waveguide Perturbation

Consider a waveguide with an arbitrary cross-section and ideally
conducting walls. Field vectors of propagating modes in the empty
guide have e dependence on the longitudinal co-ordinate z. A
biisotropic rod of a small cross-section positioned in the waveguide
causes a small change A in the propagation factor /3, which can be
measured. The unperturbed electric and magnetic fields £, , H,
and the perturbed fields E . H inside the waveguide satisfy the
Maxwell equations, where the e/“? time dependency is assumed and
V¢ is the two-dimensional gradient operator in the transverse plane.

In the conventional way, by forming the expression [13]

H -V XE+H-ViXxE, —E; VixH~FE-V,xH

and integrating this expression over the cross-section area .S of the
waveguide, the following relation for the change of the propagation
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